Hugging Face Models
Use dtx
as a Python library to evaluate Hugging Face models with just a few lines of code.
Text Generation Example
from dtx.sdk.runner import DtxRunner, DtxRunnerConfigBuilder
from dtx_models.providers.base import ProviderType
cfg = (
DtxRunnerConfigBuilder()
.agent_from_provider(ProviderType.HF, "HuggingFaceTB/SmolLM2-135M-Instruct")
.max_prompts(5)
.build()
)
report = DtxRunner(cfg).run()
print(report.model_dump_json(indent=2))
Text Classification Example (Toxicity Evaluation)
from dtx.sdk.runner import DtxRunner, DtxRunnerConfigBuilder
from dtx_models.providers.base import ProviderType
from dtx_models.evaluator import EvaluatorInScope, ModelBasedPromptEvaluation
from dtx_models.evaluator import EvaluationModelType, EvaluationModelName
evaluator = EvaluatorInScope(
evaluation_method=ModelBasedPromptEvaluation(
eval_model_type=EvaluationModelType.TOXICITY,
eval_model_name=EvaluationModelName.ANY,
)
)
cfg = (
DtxRunnerConfigBuilder()
.agent_from_provider(ProviderType.HF, "unitary/toxic-bert")
.evaluator(evaluator)
.max_prompts(5)
.build()
)
report = DtxRunner(cfg).run()
print(report.model_dump_json(indent=2))
Example Models
Text Generation
gpt2
arnir0/Tiny-LLM
HuggingFaceTB/SmolLM2-360M-Instruct
Text Classification
unitary/toxic-bert
meta-llama/Prompt-Guard-86M
ibm-granite/granite-guardian-hap-125m