Skip to main content

Setting Up Additional Dependencies

This guide covers optional but recommended setup steps for running local models and configuring environment variables used by dtx.

We will cover:

  • Installing and configuring Ollama for running local LLMs
  • Setting up environment variables for API-based models and datasets

1. Install Ollama for Local LLM Execution

Ollama allows you to run large language models locally, without external APIs.

Step 1: Install Ollama

Download and install Ollama:

curl -fsSL https://ollama.ai/install.sh | sh

Verify installation:

ollama --version

Step 2: Pull Required Model

For dtx, we recommend pulling the qwen2:0.5b model:

ollama pull qwen2:0.5b

This model supports:

  • Local LLM execution
  • Fast testing without cloud dependencies
  • Secure, offline inference

Notes

  • Ollama runs models locally, reducing latency and avoiding API limits.
  • Models are stored locally after the first download.

2. Set Up Environment Variables

Some datasets and models require API keys for access.
These environment variables are used automatically by dtx and ddtx.

Step 1: Create your .env file

Start by copying the template:

cp dtx/env.template .env

Step 2: Add your API keys

Edit your .env file and set:

OPENAI_API_KEY=your-openai-api-key
HF_TOKEN=your-huggingface-token

Step 3: (Optional) Export variables in your shell

For Linux/macOS:

export OPENAI_API_KEY=your-openai-api-key
export HF_TOKEN=your-huggingface-token

For Windows PowerShell:

$env:OPENAI_API_KEY="your-openai-api-key"
$env:HF_TOKEN="your-huggingface-token"

Notes

  • These variables are automatically picked up by both dtx and ddtx.
  • Docker users (ddtx) — environment variables from your local .env are passed to the container.
  • Required for:
    • STARGAZER dataset (OpenAI API)
    • HF_LMSYS dataset (Hugging Face token)