Testing a Toy LLM on Your Local Environment (No Setup Required)
This guide shows how to test a small LLM locally using dtx, with zero manual setup.
You will:
- Skip manual scope and plan creation
- Test your Tiny LLM directly
- Optionally test SmolLM2-135M-Instruct and GPT-2
Run Red Teaming Tests Directly (Auto-Generated Scope & Plan)
Test Tiny LLM
Run directly with auto-generated scope and plan:
dtx redteam run --agent hf_model --url arnir0/Tiny-LLM --dataset beaver --eval ibm38 -o
- Uses the beaver dataset
- Evaluates outputs with IBM Granite HAP 38M
- No manual scope or plan files needed!
Optional: Test Alternative Small LLMs
🚀 Test HuggingFaceTB/SmolLM2-135M-Instruct
dtx redteam run --agent hf_model --url HuggingFaceTB/SmolLM2-135M-Instruct --dataset beaver --eval ibm38
🚀 Test GPT-2
dtx redteam run --agent hf_model --url gpt2 --dataset beaver --eval ibm38
✅ These models are small and run locally.
Tip: Use
--max_prompts
to limit tests, e.g.--max_prompts 10
.
Understanding the Command
Argument | Description |
---|---|
hf_model | Use HuggingFace local model provider |
--url arnir0/Tiny-LLM | Model identifier or path |
--dataset beaver | Use Beaver dataset (safe for evaluator pairing) |
--eval ibm38 | Evaluate outputs using IBM Granite HAP 38M |
--max_prompts 5 | (Optional) Limit number of prompts for faster testing |
✅ Everything runs fully local, no API keys required.
⚠️ Note:
If you use thegarak
(alias:stingray
) dataset, do not provide an evaluator.Example (✅ Valid):
dtx redteam run --agent hf_model --url arnir0/Tiny-LLM --dataset stingray
Optional: Explore Datasets & Evaluators
List available datasets:
dtx datasets list
List available tactics (attack methods):
dtx tactics list
List available evaluators:
You will see options like:
ibm38
ibm125
keyword
jsonpath
Summary
Command | Purpose |
---|---|
dtx redteam run --agent hf_model --url arnir0/Tiny-LLM --dataset beaver --eval ibm38 | Test Tiny LLM locally |
dtx redteam run --agent hf_model --url HuggingFaceTB/SmolLM2-135M-Instruct --dataset beaver --eval ibm38 | Test SmolLM2 model |
dtx redteam run --agent hf_model --url gpt2 --dataset beaver --eval ibm38 | Test GPT-2 model |
dtx redteam run --agent hf_model --url arnir0/Tiny-LLM --dataset stingray | Test Tiny LLM with Stingray dataset (no evaluator) |
All fully automated
Next Steps
There are multiple ways to perform AI Red Teaming:
Red Teaming Modes
├── 1. Guided Run
│ └── dtx redteam quick
│ - Interactive wizard
│ - Choose agent, dataset, evaluator
│
├── 2. Direct Run
│ └── dtx redteam run --agent <AGENT> --dataset <DATASET> [--eval <EVALUATOR>]
│ ├── Example 1 (Airbench + IBM Eval):
│ │ dtx redteam run --agent echo --dataset airbench --eval ibm38
│ └── Example 2 (Garak, built-in eval):
│ dtx redteam run --agent echo --dataset garak
│
└── 3. Advanced Run (Scope → Plan → Run)
├── Step 1: Write or use scope file
│ e.g., sample_scope.yml
├── Step 2: Generate plan
│ dtx redteam plan sample_scope.yml sample_plan.yml --dataset stringray
└── Step 3: Run plan
dtx redteam run --plan_file sample_plan.yml